![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Plasmas? Space Energy Environment Manufacturing National Security Education Exhibit Home | |||||||||||||||||||||||||||||||||||||||||||||||||||
Benefits at Home High efficiency lighting; manufacturing of semiconductors for home computers, TVs and electronics; flat-panel displays; and surface treatment of synthetic cloth for dye adhesion. |
Business Applications Plasma enhanced chemistry; surface cleaning; processing of plastics; gas treatment; spraying of materials; chemical analysis; high-efficiency lighting; semiconductor production for computers, TVs and electronics; and sterilization of medical tools. |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Plasmas in Transportation Plasma spraying of surface coatings for temperature and wear resistance, treatment of engine exhaust compounds, and ion thrusters for space flight. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma spraying of high-temperature resistance surface coatings for a diesel engine turbocharger housing | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Microwave generated plasma around a catalyst for removal of NOx and CO from engine exhausts | |||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Thrusters for Spacecraft |
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() A flat panel with a layer of one-atmosphere plasma undergoing wind tunnel testing. This technology may lead to improvements in aircraft flight range and landing on short runways University of Tennessee |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Lighting | |||||||||||||||||||||||||||||||||||||||||||||||||||
The most prevalent man-made plasmas on our planet are the plasmas in lamps. There are primarily two types of plasma-based light sources, fluorescent lamps and high-intensity arc lamps. Fluorescent lamps find widespread use in homes, industry and commercial settings. | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Inside every fluorescent
lamp there lurks a plasma. It is the plasma that converts electrical power
to a form that causes the lamp's phosphor coating to produce the light we
see. The phosphor is the white coating on the lamp wall.
A fluorescent lamp is shown here with part of the
phosphor coating removed to reveal the blue plasma glow inside. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
High-intensity sources are widely used in industrial and commercial settings as well as for outdoor and security lighting near homes and public areas. It is high-intensity arc lamps that give you the spectacular panoramic views of cities as you fly over them at night. In high-intensity arc lamps the light we see is generally produced directly by the plasma. Color characteristics are controlled by the chemical elements put into the plasma rather than by a phosphor coating on the wall. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma-based light sources are in fact observable from outer space. Indeed, it may be characteristics of the light from those lamps that tell an alien civilization of our presence. | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
The plasma generates ultraviolet
light which in turn excites the phosphor coating inside the glass envelope.
The phosphor emits a single color of visible light. Each pixel consists of
three sub-pixels, one each of red, green and blue. By combining these primary
colors at varying intensities, all colors can be formed. |
||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Display Technology Plasma displays generally consist of two glass plates, each containing parallel electrodes, sealed to form an envelope filled with a neon and xenon gas mixture. A gas discharge plasma is created by applying an electric field between the electrodes. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Isotope Separation Plasma sources and magnetic field control of gyrating charged plasma particles are important for the separation of stable isotopes for medical and industrial use. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Plasmas for Sterilization New one-atmosphere plasma systems make possible new methods for surface cleaning and sterilization for food, medical, and other applications. Whereas standard heat sterilization is time consuming and irradiation can damage materials, this new plasma technology has been shown to kill bacteria on various surfaces in seconds to minutes. In addition to destroying bacteria, such plasma systems also destroy viruses, fungi and spores. These systems also provide an environmentally benign method for pre-treating surfaces. One-atmosphere plasma systems are now becoming available for various industrial applications. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
All but first graphic and two lighting items prepared by Oak Ridge National Laboratory. | ||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |